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General set-up and notation: let F be a local field, with ring of integers OF , uniformizer πF , and residue field

κF with |κF | “ q “ pr. Let G be a reductive group over F and GF “ GpF q. Fix a Zr1{ps-algebra Λ (or maybe we

should be more restrictive and require it to be a Zp-algebra); typically one takes Λ “ Qℓ where ℓ ‰ p. So far we’ve

been studying RepΛpGF q, the category of smooth, or locally constant, representations, where we completely ignore

any possible issues of topology on the ring Λ.

Our goal today is to pass to the other (“spectral”) side of Langlands duality, and introduce various notions of

(local) Langlands parameters, roughly some kind of homomorphisms ϕ : ΓF Ñ qGpΛq up to conjugation, where ΓF

is the absolute Galois group (except not really; more on that later). For simplicity, I will require that G is split

over F (so we can work with qG instead of LG), and I’ll choose a square root of q (to avoid having to think about
CG); see the references for more general statements. We will consider three kinds.

1. When Λ “ Zℓ,Qℓ, we will use the topology on Λ and consider continuous homomorphisms ϕ. These are perhaps

most traditionally called Langlands parameters. The notion of continuity doesn’t lend well to building moduli

spaces (or stacks), but it can be made to work in this case.

2. When Λ is a Zr1{ps-algebra, we can make some choice of generators for the “tame” part and build a moduli

stack. In this presentation, the substack of tame parameters will arise naturally.

3. When Λ Ą Q, we consider a certain modification of the above called Weil-Deligne parameters. In this

presentation, the substack of unipotent parameters will arise naturally.
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1 Extensions of local fields

We let ΓF denote the absolute Galois group of F , equipped with its canonical topology,1 which is pro-finite. Note:

F will denote the separable closure, not the algebraic closure. What are some extensions E Ą F? Some basic

initial facts: every finite extension of E{F is a local field, OE is the integral closure of OF in E, and we say the

ramification index of E{F is

eE{F :“ vpπF q{vpπEq.

1.1 Unramified extensions

An extension E{F is unramified if eE{F “ 1, i.e. if uniformizers πF of F are also uniformizers of OE , or equivalently

if rE : F s “ rκE : κF s, Morally, these are “extensions coming from the residue field”, e.g. Fqnppπqq as an extension

of Fqppπqq. Recall that if κF “ Fq, then

ΓFq
» pZ ↠ Z{nZ » ΓFqn {Fq

.

where Fqn{Fq has rFqn : Fqs “ qn´1 and splitting polynomial ppxq “ xp
n

´ x. Note that this factors xpxp´1 ´

1qpxpn´1qp ` x ` ¨ ¨ ¨ ` 1q, and the factor xpxp´1 ´ 1q is satisfied by every element of Fp, so we can just take the

other factor, whose degree implies |Fpn | “ pn.

We have the following. For Fqppπqq it is essentially clear what the unramified extensions should be. The pattern

turns out to hold in p-adic case as well. We state the following without proof, but it can be found e.g. in [Se79].

Proposition 1.1.1. The canonical map gives an group isomorphism

Γur
F

»
ÝÑ ΓκF

» pZ.

We can obtain every unramified extension by adjoining roots of 1. Recall the analogous statement in finite fields:

Fˆ
q is cyclic,2 and Fq contains all roots of unity coprime to p,3 but no extension contains any pth roots of unity

other than 1. Thus, Fp is obtained from Fp by adjoining all roots of unity of order coprime to p.4 It’s hard to say

which field extension contains a particular root of unity, since this amounts to factoring pn ´ 1.

1.2 Tamely ramified extensions

An extension E{F is tamely ramified if p ∤ eE{F . An extension is totally ramified if κE “ κF . Every tamely ramified

extension of a local field is obtained by adjoining mth roots for p ∤ m.

Proposition 1.2.1. Every tamely ramified extension is of the form F pa
1{m1

1 , . . . , a
1{mk

k q for p ∤ mi and ak P F .

Proof. Let E{F be a totally tamely ramified extension, and choose some α P E andmminimal such that vF pαqm P Z.
A priori, we only have αm P F ¨ OE , e.g. if α “

?
πF ` πF “

?
πF p1 `

?
πF q. We want to tweak it so αm P F . We

can write αm “ uβ where u P Fˆ and β P OE where β ” ζr pmod mEq for some rth root of unity where p ∤ r (i.e.

because κE is obtained from κF by adjoining roots of unity as discussed earlier). To get rid of this root of unity,

we take instead αmr “ urβr where now βr ” 1 pmod mEq. Now, by Hensel’s lemma5 applied to the polynomial

ppxq “ xmr ´ βr (i.e. take the root 1 of ppxq “ xmr ´ 1 pmod mEq which is simple since mr is coprime to p), there

is γ ” 1 pmod mEq such that γmr “ βr, and we have pα{γqmr “ ur P Fˆ, i.e. α{γ “ u1{m. Now replace F with

F pα{γq and continue.

We note there is no “maximal totally tamely unramified extension.” The reason is, for example, suppose

F “ Fqppπqq and that ϵ P Fq has no square root. Then, F p
?
ϵπq and F p

?
πq are totally totally unramified

extensions, but
?
ϵ P F p

?
ϵπ,

?
πq comes from an an extension of the residue field.

1See Stacks Project.
2Because xr “ 1 has at most r solutions in any field, so r ě q ´ 1.
3The units of Fˆ

qn is a cyclic group of order qn ´ 1, and for any m coprime to p there is is an n such that qn – 1 pmod mq.
4Formally, this means adding roots of the prime-to-p cyclotomic polynomials, which have integer coefficients.
5Let pR,m, vq be a m-adically complete valuation ring, and let ppxq P Rrxs be monic. Let a be a simple root of p modulo m. This

root can be lifted to a unique root in R.
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1.3 Wildly ramified extensions

Wildly ramified extensions are those where p divides the ramification index. We won’t treat these in detail, since

their structure won’t be relevant to us; see [La02] for detail. In the tame case, extensions of the equal and mixed

characteristic fields have the same structure (in the sense that their tame Galois groups are isomorphic). But in

the wild case, the extensions start to look very different.

For one, Qp is a perfect field, being characteristic zero, so all extensions are separable. For F “ Fqppπqq the field

extensions Fqppπ1{pqq are not separable.6

Moreover, we have some understanding of the degree p extensions.

Proposition 1.3.1. The field F “ Fqppπqq has infinitely many extensions of degree p.7

Proof. Consider the Artin-Schrierer operator

ζ : F Ñ F, ζpxq “ xq ´ x

which is additive, Fq-linear, with kernel kerpζq “ Fq Ă F . We will consider the splitting polynomials pαpxq :“

ζpxq ´ α for α P K. We have:

1. If α P impζq, this splits in F (it has a root and its degree is prime).

2. By Fq-linearity, pα and puα for u P Fˆ
q have the same splitting field (i.e. puα

pxq “ 0 if and only if pαpuxq “ 0).

3. By additivity, pα and pα`ζpβq have the same splitting field (i.e. pαpxq “ 0 if and only if pα`ζpβqpx` βq “ 0).

Thus we have an assignment

F {pimpζq ¨ Fqq ´ t0u ÝÑ tdegree p extensionsu.

The main theorem of Aritin-Schrierer theory says that this map is an isomorphism.

Proposition 1.3.2. The field Qp has finitely many extensions of degree pn (in particular of any fixed degree).

Proof. Kummer theory.

1.4 Summary

In summary, for any field extension E{F , we have intermediate field extensions:

F Ă Eur Ă Et Ă E

where Eur{F is unramified, E{Eur is totally ramified, Et{Eur is totally tamely ramified, and E{Et is totally wildly

ramified. These can be understood universally in terms of the Galois group, i.e. we have quotients

ΓF Γt
F Γur

F t1u

ΓE{F ΓEt{F ΓEur{F ΓF {F .

We call

IF “ kerpΓF Ñ Γur
F q, PF “ kerpΓF Ñ Γt

F q

the inertia subgroup and wild inertia subgroup respectively; they are not open, and do not contain any open

subgroup. For a fixed finite extension E{F , we define IE{F , PE{F to be the images in ΓF ↠ ΓE{F . We summarize

the above discussion as follows.

6I.e. ppxq “ xp ´ π “ px ´ π1{pqp.
7Reference: these notes by Brian Conrad.
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Proposition 1.4.1. We have a short exact sequence

1 ÝÑ IF {PF »
ź

ℓ1‰p

Zℓ1 ÝÑ Γt
F » ΓF {PF ÝÑ Γur

F » ΓF {IF » pZ ÝÑ 1.

Furthermore, PF is a pro-p group. In particular, IF is pro-solvable8 and PF is its pro-nilpotent radical.9

2 Langlands parameters

The field Qℓ is not a local field because its valuation v is not discrete (i.e. we’ve almost all roots of a uniformizer).

It is also not complete. However, it still has a ring of integers OE and maximal ideal mE defined

OE “ tx P E | vpxq ě 0u, mE “ tx P E | vpxq ą 0u

and its residue field κE “ Fℓ.

Recall a Langlands parameter should be something like a continuous map ΓF Ñ qGpQℓq. We start with two

basic results; one for passing from Qℓ to a finite extension E{Qℓ, and the other establishing that maps from a pro-p

group to a pro-ℓ group factor through a finite quotient.

Proposition 2.0.1. Consider a compact (Hausdorff) subgroup K Ă GLnpQℓq. There is a finite extension E{F

such that K Ă GLnpEq.

Proof. We have
ď

E{F finite

K XGLnpEq “ K

Now, K is a Baire space since it is compact Hausdorff, i.e. every increasing union of subsets with empty interior

has empty interior. Since the set of extensions E{F is countable,10, this means that K has empty interior in K,

which cannot be. Thus, one of the K XGLnpEq must be nonempty interior.

Suppose K X GLnpEq has nonempty interior in K, i.e. K contains an open subgroup U ; by translating it, we

can make it cover K, and by compactness, we can take finitely many translates. That is, K X GLnpEq has finite

index in K, so K lives in some finite extension.

Proposition 2.0.2. Let Γ be a pro-prime-to-ℓ group. Then, any continuous group homomorphism ρ : Γ Ñ GLnpQℓq

has finite image, i.e. factors through a finite quotient.

Proof. Since Γ is pro-finite, it is compact. We use Proposition 2.0.1 and replace Qℓ with a finite extension E{Qℓ.

Then, pick any open pro-ℓ subgroup K Ă GLnpEq, so ρ´1pKq is an open subgroup of Γ. But K̊ is pro-ℓ, and any

continuous group homomorphism from a pro-p group to a pro-ℓ-group is trivial.

So we see the potential for non-finiteness comes from two Zℓ in the unramified part Zℓ and the tamely ramified

part. We will deal with these two separately.

2.1 Galois group to Weil group, and Langlands parameters

Let’s start with the unramified part. The fix here is “by hand” but somehow it’s the “right” thing to do in Langlands.

This story is a bit long to tell, but the rough idea is that various (global and local) Langlands correspondences are

required to be compatible with Hecke operators under the Satake isomorphism:

QℓrGpOF qzGpF q{GpOF qs » Op qG{ qGq.

8I.e. for each quotient, its derived series terminates, or it has a central series with abelian quotients.
9It is nilpotent because every pro-p group is pro-nilpotent, i.e. every p-group is nilpotent. To see this, we build the ascending central

series t1u Ă Z1 “ ZpGq Ă ZpG{Z1q ˆG{Z1
G Ă ¨ ¨ ¨ , which terminates if every p-group has a nontrivial center. If p | |G|, then write

|G| “ |ZpGq| `
ř

|Ci| where Ci are non-central conjugacy classes to deduce p | |ZpGq|.
10This uses Krasner’s lemma and I’ll just take it on faith. It also follows from the stronger result in Kummer theory that there are

only finitely many extensions of a given degree.
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The left evidently has an interpretation as the spherical Hecke algebra for a GpF q. On the right, we expect the set

of unramified Langlands parameters, i.e. maps ΓF Ñ qGpQℓq which are trivial on the inertia IF . However, there

is a mismatch: he affine quotient qG{{ qG parameterizes semisimple conjugacy classes of qG, while HomcppZ, qGq{G

parameterizes torsion conjugacy classes of qG. One can imagine fixing this by: (1) replacing pZ with Z and (2)

imposing a semisimplicity condition on the image.

We first deal with the first issue, replacing pZ by Z.

Definition 2.1.1. The Weil group WF of F is

WF :“ ΓF ˆ
pZ Z

topologized so that the maps in the exact sequence

1 ÝÑ IF ÝÑ WF ÝÑ Z ÝÑ 1

are continuous for the discrete topology on Z and the subspace topology on IF Ă ΓF .
11

We now define Langlands parameters for a group G split over F .

Definition 2.1.2. Equip ΓF with its canonical (pro-finite) topology and qGpQℓq with the locally ℓ-adic topology

inherted from Qℓ. The set of Langlands parameters is

LpGq :“ Homss
c pWF , qGpQℓqq{ qGpQℓq.

i.e. continuous “Frobenius-semisimple” group homomorphisms such that any lift of Frobenius vanishing on maps

to a semisimple element.

2.2 Tame monodromy and Weil-Deligne parameters

Some issues with the above definition: (1) we need to define semisimplicity, and (2) the geometry is unclear from this

definition. We somewhat address the second problem and clarify some of the geometry by producing a generators-

and-relations presentation of the tame part of WF . We need to introduce a norm on ΓF coming from local class

field theory. There is a local Artin homomorphism θ : Fˆ Ñ ΓF {rΓF ,ΓF s which is an isomorphism after taking

pro-finite completion of Fˆ. The norm is defined to be the image under

ΓF ↠ ΓF {rΓF ,ΓF s
θ´1

ÝÑ yFˆ v
ÝÑ Z q‚

ÝÑ Q.

The norm is trivial on IF , and for any lift of Frobenius σ, we have ||σ|| “ q. We also define a norm on WF in the

same way.12

We define

IF IF {PF »
ź

ℓ1‰p

Zℓ1 Zℓt

tℓ

i.e. the projection to the tame and pro-ℓ parts, and have the following relationship.

Proposition 2.2.1. For w P ΓF and τ P IF , we have

tpwτw´1q “ ||w||tpτq “ tpτ ||w||q,

tℓpwτw
´1q “ ||w||tℓpτq “ tℓpτ

||w||q.

11Note this is not the subspace topology on WF Ă ΓF ; if we took the subspace topology, we would simply be taking a dense subset,
which makes no difference when mapping out. In particular, while ΓF is compact, WF is only locally compact.

12There appears to sometimes be a sign flip when defining the norm here. I’m not sure why, but I think I am accounting for it by an
inverse in my definition for the Weil-Deligne group.
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Proof. First, PF is normal, so for w P PF we have

tpτwτ´1q “ tpwq “ 1

and since ||PF || “ 1, this verifies the claim for w P PF . Likewise, since since the norm is trivial on IF and IF {PF

is abelian, we have the same for w P IF . We only need to check the case where w “ σ is a lift of Frobenius to Γt
F ,

and τ P IF {PF Ă Γt
F of finite order n (automatically, p ∤ n), which are dense in IF {PF .

We view τ as an automorphism of the maximal tame extension F t{F . Choose a uniformizer π of F , choose a

fixed nth root π1{n, and let ζn be the nth root of unity such that τ sends π1{n ÞÑ ζnπ
1{n. We know that σpπ1{nq is

also an nth root of σpπq “ π, so that σpπ1{nq{π1{n is an nth root of unity, which is fixed by τ P IF . Thus, τ acts

on σpπ1{nq by the same ζn. Then we have

στpπ1{nq “ σpζnπ
1{nq “ ζqnσpπ1{nq “ τ qpσpπ1{nqq

as desired.

Corollary 2.2.2. There exists an embedding

ι :Wq :“ xτ, σ | στσ´1 “ τ qy ãÑ W t
F

determined by a lift of Frobenius σ, and and a topological generator τ of IF {PF .

Definition 2.2.3. Fix an embedding ι as in Corollary 2.2.2. We have a short exact sequence

1 ÝÑ PF Ñ WF ÝÑ W t
F ÝÑ 1.

We let W ι
F Ă WF denote the preimage of ι :Wq Ă W t

F , equipped with a topology such the maps in the short exact

sequence

1 ÝÑ PF ÝÑ W ι
F ÝÑ Wq ÝÑ 1

are continous for the discrete topology on Wq.
13 We define the set of ι-local Langlands parameters to be the colimit

LιpGq :“ Homss
c pW ι

F ,
qGpQℓqq{ qGpQℓq “ colim

E{F t
Homss

pW ι
E{F ,

qGpQℓqq{ qGpQℓq

of continuous “Frobenius-semisimple” parameters.

2.3 Semisimplicity and Weil-Deligne parameters

We now deal with the issue of Frobenius-semisimplicity using the notion of Weil-Deligne parameters. Naively, we

want to require the Frobenius 1 P Z to act semisimply, but this doesn’t make sense for quotients. It’s also far too

strong to require that lifts act semisimply, since this will be basically everything. Instead, we have some sense that

Zℓ is contributing the only unipotent part, while everything else acts like a finite group, so we want all lifts that do

not involve Zℓ Ă IF {PF to act semisimply. More precisely, we want to have the ability to “factor out” the nilpotent

part, and define Frobenius-semisimplicity by requiring total semisimplicity for the other factor. To do this we need

the Grothendieck ℓ-adic monodromy theorem. We define the matrix exponentials and logarithms for E{Qℓ a finite

extension:

exppxq “

8
ÿ

i“0

xi

i!
,

logp1 ` xq “

8
ÿ

i“1

p´xqi

i
.

The series exppxq converges on matrices with pro-nilpotent elements satisfying vEpxq ą e{pℓ´1q, the series logp1`xq

converges on matrices with pro-nilpotent elements satisfying vEpxq ą 0, and the two are inverse equivalences where

13Following Proposition 2.0.2, this definition is essentially cooked up to make the topology irrelevant.
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they are defined.[La94] We also note that exp is well-defined on any (literally, i.e. not pro-)nilpotent element.

Theorem 2.3.1 (Grothendieck ℓ-adic monodromy). Let E{Qℓ be a finite extension, and ρ : WF Ñ GLnpEq a

continuous homomorphism.14 There is an open15 subgroup U Ă IF such that

ρ|U pwq “ expptℓpwqNq

for some uniquely determined nilpotent N P glnpEq. Furthermore, for w P WF ,

ρpwqNρpwq´1 “ ||w||N.

Proof. Since kerptℓq is pro-p, ρ is trivial on an open subgroup of kerptℓq. Choose an open subgroup U Ă IF which

restricts to it, and consider the factorization of U through

U{pU X kerptℓqq » tℓpUq » ℓkZℓ

since the compact open subgroups of Zℓ are precisely ℓkZℓ. We need to show that ρ ˝ tℓ is given by an exponential.

Since IF is compact, ρpIF q is compact, and by a similar argument as in Proposition 2.0.1 ρpIF q is contained in a

compact open, thus up to conjugation impρq Ă GLnpOEq. Intersect U with a pro-ℓ compact subgroup of GLnpOEq

where the logarithm converges, so the map ρ can be written

ℓkZℓ » tℓpUq
ρ

ÝÑ 1 ` ℓjgln
log

ÝÑ ℓjglnpOEq.

Every such continuous map is determined by the value of the topological generator 1 P Zℓ, say N P glnpOEq, and

so the map must be x ÞÑ xN by uniqueness. For nilpotence, assume the formula; taking w to be a lift of Frobenius,

we have the eigenvalues of N are the same as the eigenvalues for qN , i.e. N is nilpotent.

We now prove the formula: choose a nonzero τ P U X Zℓ, and apply ρ to the formula in Proposition 2.2.1:

ρpwqρptℓpτqqρpwq´1 “ ρptℓpτqq||w||

ρpwq expptℓpτqNqρpwq´1 “ expp||w||tℓpτqNq

and apply log (shrinking U if necessary).

Proposition 2.3.2. Let ρ be a Langlands parameter. Choose U Ă IF open and N nilpotent as in Theorem 2.3.1,

σ a lift of Frobenius, and define

ρsspσmτq “ ρpσmτq expp´tℓpτqNq τ P IF .

Then, ρss :WF Ñ Qℓ is a homomorphism, continuous for the discrete topology on Qℓ, and takes values in semisimple

elements. Changing the lift of Frobenius gives an conjugate pair pρss, Nq.

Proof. We first show it is a homomorphism. We write σmτσnτ 1 “ σm`npσ´nτσnqτ 1, and

ρsspσmτσnτ 1q “ ρpσm`nσ´nτσnqρpτ 1q expp´tℓpσ
´nτσnqNq expp´tℓpτ

1qNq

“ ρpσmτqρpσnτ 1q expp´q´ntℓpτqNq expp´tℓpτ
1qNq

“ ρpσmτq expp´qnq´ntℓpτqNqρpσnτ 1q expp´tℓpτ
1qNq.

Next, if we change the lift of Frobenius to σ1 with σ “ σ1τ 1 for τ 1 P IF , then we have

pσ1τ 1qm “ σ1τ 1 ¨ ¨ ¨σ1τ 1 “ σ1mpσ´m´1τ 1σm`1q ¨ ¨ ¨ pσ´1τ 1σqτ 1,

14This works for ΓF as well.
15I.e. for the subspace topology of IF , i.e. coming from a finite extension of E.
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and that

tℓppσ´m´1τ 1σm`1q ¨ ¨ ¨ pσ´1τ 1σqτ 1q “ pq´m´1 ` ¨ ¨ ¨ ` q´1 ` 1qtℓpτ
1q “

q´m ´ 1

q´1 ´ 1
tℓpτ

1q.

Then we compute

ρ1ssppσ1τ 1qmτq “ ρpσmτq exp

ˆ

´
q´m ´ 1

q´1 ´ 1
tℓpτ

1qN

˙

expp´tℓpτqNq.

We can try conjugating by exppαtℓpτ
1qNq:

exppαtℓpτ
1qNqρpσmτq exp

ˆ

´
q´m ´ 1

q´1 ´ 1
tℓpτ

1qN

˙

expptℓpτqNq expp´αtℓpτ
1qNq

“ ρpσmτq exppq´mαtℓpτ
1qNq exp

ˆ

´

ˆ

q´m ´ 1

q´1 ´ 1
` α

˙

tℓpτ
1qN

˙

expptℓpτqNq

“ ρpσmτq exp

ˆ

´

ˆ

q´m ´ 1

q´1 ´ 1
` αp1 ´ q´mq

˙

tℓpτ
1qN

˙

expptℓpτqNq.

Evidently, we can take α “ 1{pq´1 ´ 1q. Next, to see that ρss has semisimple values, we note ρss|IF is trivial on

U , so it has finite image, thus it has semisimple values in a group of characteristic zero and is continuous in the

discrete topology.

That is we are able to “factor”

ρ “ ρssρu

into a “unipotent on IF ” part ρu “ expptℓp´qNq (only defined on IF ) and a “semisimple on IF ” part ρss (defined

on all of WF ). In particular we can now define Frobenius-semisimplicity by requiring that ρss is semisimple on all

of WF , not just IF . This leads to the following definition.

Definition 2.3.3. Consider Qℓ with the discrete topology. The Weil-Deligne group is

WDF :“ WF ˙ Ga

where w ¨ λ “ ||w||´1λ, i.e. with group law pw, λqpw1, λ1q “ pww1, ||w||λ ` λ1q, and ||w|| is obtained via local Artin

reciprocity. The set of Weil-Deligne parameters is

WDpGq :“ Homss
c pWDF , qGpQℓqq{ qGpQℓq

“ tpρss, Nq P Homss
c pWF , qGpQℓqq ˆ N

qGpQℓq | ψpwqNψpwq´1 “ ||w||Nu{ qGpQℓq

where ρss is semisimple in the sense that its image consists entirely of semisimple elements.

2.4 Moduli stack of Langlands parameters

Let Γ be a discrete group and G an affine algebraic group. The moduli stacks will make use of representation schemes

HompΓ, Gq. These schemes have natural stacky enhancements via the adjoint G-action, and a re-interpretation in

terms of moduli stacks of Betti local systems

LocGpXq “ MapStpX,BGq “ HompΓ, Gq{G

where X is any topological space (i.e. homotopy type, or anima) with π1pXq » Γ. These in turn have natural

derived enhancements by taking derived mapping stacks of the Eilenberg-Maclane space

LocGpKpΓ, 1qq “ LocGpBΓq “ MapDStpBΓ, BGq.

Alternatively, there are algebraic constructions due to Yuri Berest, Giovanni Felder, and Ajay Ramadoss under the

monikers representation homology, derived representation schemes, et cetera.
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Given a cell presentation of X, i.e. via pushouts diagrams involving n-spheres and disks, one can inductively

compute LocGpXq by the formula

LocGpcolimXαq “ MappcolimXα, BGq “ limMappXα, BGq.

Let’s do some examples.

1. The scheme HompZ, Gq “ G. There is no derived structure. The stacky version is LocGpS1q “ G{G.

2. More generally, HompFk, Gq “ Gn, where Fk is the free group on k generators. The stacky version is

LocGp
Ž

k S
1q » Gn{G.

3. One can compute that LocGpSnq “ Ωn´1G, i.e the based loop space at the identity, inductively using the

presentation of Sn as Sn´1 with two n-cells attached. For example, for S2, we have

LocGpS2q LocGp˚q “ teu{G

LocGp˚q “ teu{G LocGpS1q “ G{G.

The underlying scheme of Ωn´1G is just a point (the identity), so this is all about derived structure.

4. The scheme HompZ{nZ, Gq is the subscheme of n-torsion points of G. The underlying reduced scheme is

discrete. Taking n “ 2, the derived stacky version is LocGpRP8
q. Note that this is different from LocGpRP2

q,

which is computed via its presentation using a 0-cell, a 1-cell, and a 2-cell:

LocGpRP2
q G{G

teu{G G{G

p´q
2

Very often, LocGpRP2
q is non-derived. However, to go from RP2 to RP8 requires attaching 1 cells in every

higher dimension, which potentially introduces derived structure.

These representation schemes (or moduli stacks of local systems) can be defined for any pro-discrete group by

taking colimits. We can also take Γ to be any algebraic group.

Definition 2.4.1. We define three versions of the moduli stack of Langlands parameters over various coefficient

fields Λ. They are essentially the same as the three notions of Langlands parameters we have already defined,

except that they fit into moduli stacks, and the Frobenius-semisimplicity condition is removed. We note that the

Langlands dual group qG can be defined over Z, thus any coefficient ring Λ.

1. Loc
qGpF q is a stack over SpecZℓ, thus can be defined for any Zℓ-algebra (including Qℓ). The general challenge

to defining this due to continuity issues, and is handled in [Zh21] and [FS21].

2. Locι
qG
pF q is a stack over Zr1{ps, but requires a choice of ι. It is:

Locι
qG
pF q :“ colim

EĄF t
HompW ι

E{F ,
qGq{ qG.

Note that HompΓ, Gq for Γ a discrete group is always representable by a finite-type stack. The (open and

closed, non-connected) substack of tame Langlands parameters is defined by taking E “ F t, i.e. requiring

factorization through W ι
F t{F » W ι

F {PF » Wq:

HompWq, qGq{ qG “ tpσ, τq P qGˆ qG | στ “ τ qσu “ Loc
qGpTqq

where Tq is the “q-twisted torus” obtained by gluing the ends of a cylinder by a degree q map. As long as

q ‰ ˘1, one can show this stack has no derived structure.
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3. LocWD
qG

pF q is a stack over Q. For E Ą Fur we let WDE{F “ WE{F ˙ Ga (i.e. the norm vanishes on

kerpWF Ñ WE{F q), and define

LocWD
qG

pF q :“ colim
EĄFur

HompWDE{F , qGq{ qG.

One can define the (open and closed, connected) substack of unipotent Langlands parameters by taking

E “ Fur, i.e. requiring factorization WWD
Eur{E » WWD

F {pIF ˙ Gaq » Z ˙ Ga:

HompZ ˙ Ga, qGq{ qG “ Loc
qGpS1 ˙BGaq.

Note that since Γ involves a Ga, a priori this stack can have infinitesimal and derived structure. One can

show that, essentially thanks to the twist by q (i.e. the semidirect product), that it does not.

We now state a few results from [Zh21] that establishes the compatibility between the above notions of moduli

stacks.

Proposition 2.4.2. The maps ι :W ι
F Ñ WF induces natural isomorphisms

Loc
qGpF q

»
ÝÑ Locι

qG
pF q bZr1{ps Zℓ Locι

qG
pF q bZr1{ps Qℓ

»
ÐÝ LocWD

qG
pF q bQ Qℓ

inducing isomorphisms

Loc
qGpF q bZℓ

Qℓ
»

ÝÑ Locι
qG
pF q bZr1{ps Qℓ

»
ÐÝ LocWD

qG
pF q bQ Qℓ.

Furthermore, the ind-scheme Locι
qG
pF q is a disjoint union of classical reduced finite-type affine schemes, flat over

Zr1{ps, equidimensional of dimension dimp qGq, a local complete intersection, and Calabi-Yau. Thus, the same is

true of Loc
qGpF q and LocWD

qG
pF q (over their respective coefficients).

Remark 2.4.3. The stack Locι
qG
pF q could have been defined over Z. However, it does not give the “correct” answer

when ℓ “ p (in that the above proposition is compatible with the “right” definition of Loc
qGpF q over Zp), so we

define it over Zr1{ps. Likewise, the stack LocWD
qG

pF q can be defined over Z, but in order to relate it to any of the

others we need the exponential map, so we define it over Q.
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